

Autonomous Vehicles & Connected Vehicles: Challenges for Motorway Operation Companies

Bill M. Halkias, PE, MSCE, F. ASCE, F. ITE

President, Hellenic Association of Toll Road Network • **HELLASTRON**

Managing Director & CEO, Attica Tollway Operations Authority • Attikes Diadromes S.A.

1st Vice President, Association Européenne des Concessionnaires d'Autoroutes et d'Ouvrages à Péage • ASECAP

Introduction

Car industries are developing technologically-advanced vehicles to deal with current challenges:

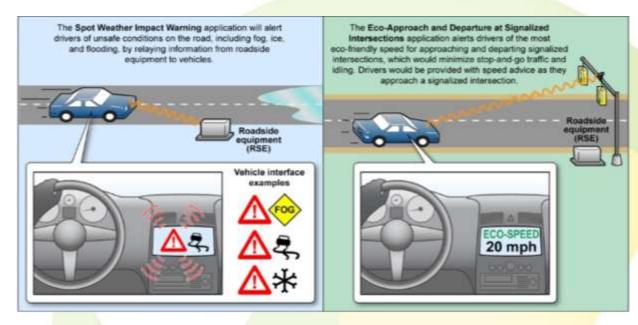
 Road Crashes: 1.2 million deaths / year & Injuries & Material Damages

2-3% of Gross World Product (GWP) *

- Traffic Congestion
- Global Warming / Air Pollution

^{*} Source: World Health Organization (WHO)

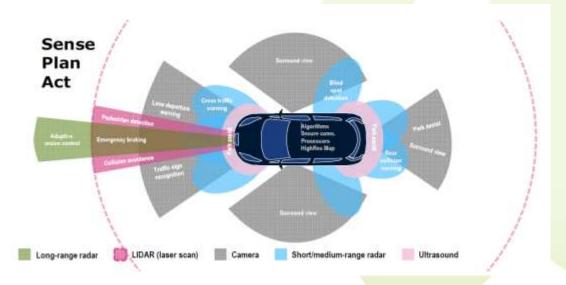
What are Connected Vehicles?


Connected vehicles are vehicles that provide connection to at least one of the following:

- The Internet
- Other vehicles (V2V)
- Infrastructure (V2I)
- Everything (V2X) i.e. Internet Vehicles Infrastructure Devices Pedestrians – Grid

Applications of Connected Vehicles

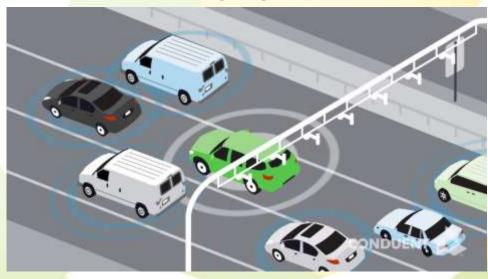
- Navigation assistance
- Front-collision warning
- Lane-departure warning
- Intersection assistance
- Left-turn assistance
- Park assistance / Park garage pilot
- Highway pilot
- Red signal violation warning
- Weather conditions warning (fog, snow, ice)
- Eco-approach at signalized intersections



Source: United States Government Accountability Office Report to Congressional Requesters. Intelligent
Transportation Systems (September 2015)

What are Autonomous Vehicles?

- The evolution of connected vehicles will lead to vehicles that will not need human operation, called "Autonomous Vehicles".
- Autonomous Vehicles will perceive their surroundings through Radar, Lidar, GPS, odometry and machine vision.


Source: International Transport Forum (2015)

- Travel time reduction / ease in finding parking space
- Truck platooning / reduced costs of transporting goods
- Better traffic control and incident management
- Ease in toll collection
- Reduction of crashes / fatalities / injuries
- Fewer greenhouse emissions

Source: Logisticsmanager.com (2016)

Disadvantages of CAVs

- Possibility of cyber attack
- Reluctance/resistance to release control of vehicle to a computer
- Significant cost of installation and maintenance of road-side equipment
- Risk of ignoring safety instruction/alert (e.g. seatbelt) or overall lack of attention
- Driver inexperience in case of need to take control of the vehicle

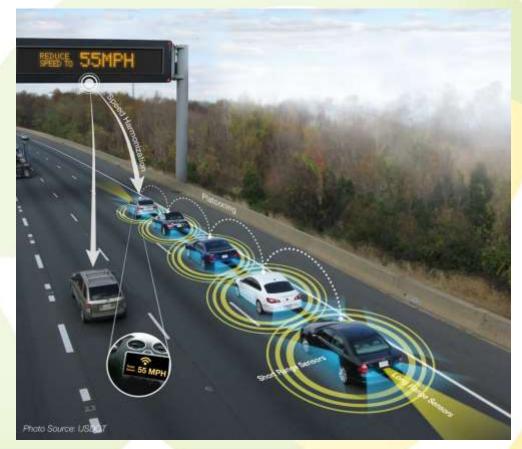
Main questions to be answered

Legal and regulative framework:

Who will be responsible for a crash? The driver? The automaker? The programmer?

• Influence of autonomous fleet on transport design and road operation:

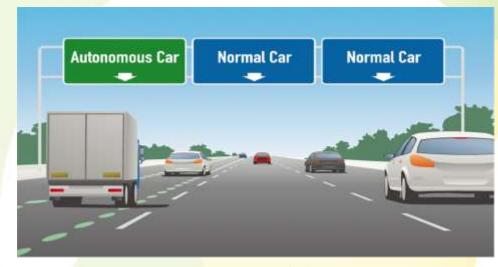
Fewer/narrower highway Lanes? Mixed traffic?


Cost of equipment:

Who is going to pay for installation and maintenance? The State? The operator? The Concessionaires?

- Developing technical standards / interoperability
- Driver training? Age limits? Need for driver to oversee autonomous systems?

CAVs and conventional vehicles - mixed traffic


- Simultaneous existence of conventional and CAV vehicles in the same road seems very complex. The reason is that driving attitude will be different, such safety distance, braking distance etc.
- For that reason, separation of traffic is recommended.

CAVs and conventional vehicles - Lane separation

- Use of the left lane only for CAVs or in combination with other categories (High Occupancy Vehicles, emergency vehicles etc.)
- Installation of sensors in the left lane to communicate with vehicles for safety maximization.
- Surveillance of left lanes? Cameras?Police? Use of lane separators? Fines?

Source: Inhabitat.com (2016)

Creation of a Think Tank to promote sustainable transport and mobility

- Members will be road operators, state authorities, software companies, universities and other stakeholders.
- The mission will be: exchange of ideas, formation of common positions, networking for problem solutions, participation in R&D and pilot applications.
- A challenging start could be the development of pilot application for new technologies and CAVs on motorways, as motorways offer a well protected environment.

Conclusions

- Car industries are currently performing many tests/pilots of CAV technologies.
- It is essential to ensure that tests are performed in real conditions for better integration of technologies and risk identification.
- Stakeholders need to cooperate with road operators for maximization of the advantages of CAVs.
- The road operators have to follow the vehicle evolution and adapt to the new technologies.

Thank you for your attention!

Bill Halkias, P.E., MSCE, F.ASCE, F.ITE

President, Hellenic Association of Toll Road Network • HELLASTRON bhalkias@hellastron.com • www.hellastron.com

Managing Director & CEO, Attica Tollway Operations Authority * Attikes Diadromes S.A. bhalkias@attikesdiadromes.gr * www.aodos.gr

1st Vice President, Association Européenne des Concessionnaires d'Autoroutes et d'Ouvrages à Péage * ASECAP